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ABSTRACT

Motivation: Whole-genome screens suggest that eukaryotic
genomes are dense with non-coding RNAs (ncRNAs). We introduce
a novel approach to RNA multiple alignment which couples a
generative probabilistic model of sequence and structure with an
efficient sequence annealing approach for exploring the space
of multiple alignments. This leads to a new software program,
Stemloc-AMA, that is both accurate and specific in the alignment of
multiple related RNA sequences.
Results: When tested on the benchmark datasets BRalibase II
and BRalibase 2.1, Stemloc-AMA has comparable sensitivity to
and better specificity than the best competing methods. We use
a large-scale random sequence experiment to show that while
most alignment programs maximize sensitivity at the expense of
specificity, even to the point of giving complete alignments of
non-homologous sequences, Stemloc-AMA aligns only sequences
with detectable homology and leaves unrelated sequences largely
unaligned. Such accurate and specific alignments are crucial
for comparative-genomics analysis, from inferring phylogeny to
estimating substitution rates across different lineages.
Availability: Stemloc-AMA is available from http://biowiki.org/
StemLocAMA as part of the dart software package for sequence
analysis.
Contact: lpachter@math.berkeley.edu; ihh@berkeley.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Computational and experimental whole-genome screens suggest that
there are thousands of undiscovered non-coding RNAs (ncRNAs)
in eukaryotic genomes, and there has been much recent progress in
cataloging these functional elements (Rose et al., 2007; Ruby et al.,
2007; Torarinsson et al., 2008). In order to group these elements
into families and understand their evolutionary relationships at the
single-nucleotide level, we need sensitive, specific and efficient
methods for accurately aligning structured RNA, even in the
presence of highly diverged sequence or structure.

Accurate alignment of homologous ncRNAs is notoriously
difficult. Because functional constraint largely acts at the level
of structure, rather than sequence, alignment programs which fail
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to take structure into account cannot effectively align ncRNAs
with low sequence identity (Gardner et al., 2005). The Sankoff
algorithms (Sankoff, 1985) for structural alignment offer a solution;
structural alignment methods attempt to simultaneously infer both
the consensus secondary structure and sequence alignment.

While in principle structural alignment allows for accurate,
structurally aware inference of ncRNA multiple alignments, in
practice the RNA alignment problem is still unsolved. The full
Sankoff algorithms, O(L3N ) in time for N sequences of length
L, are prohibitively expensive. Structural alignment programs use
heuristics such as restricting the sets of possible alignments and folds
considered by the algorithm in order to reduce time and memory
usage of the algorithm, but even so practical programs can make
only pairwise comparisons when building multiple alignments. We
therefore need robust methods for building a multiple alignment
from many pairwise structural alignments.

Most existing RNA multiple alignment programs suffer from one
or both of the following problems: like most alignment methods,
they maximize sensitivity, even at the expense of specificity, and
furthermore, they build multiple alignments with variations on
progressive alignment, despite its well-known shortcomings.

A good alignment algorithm must be both sensitive and specific.
High sensitivity is meaningless unless we can be reasonably
confident that aligned characters are truly homologous. Because
increased sensitivity generally means decreased specificity, and
vice versa, we want to be able to dynamically adjust the
sensitivity/specificity tradeoff of our alignment method depending
on the target application. For example, phylogeny reconstruction
and tree building require very precise alignments, and it is better to
have a reduced number of correctly aligned characters than many
imperfectly aligned characters (so we want to maximize specificity,
even at expense of sensitivity).

Furthermore, a good multiple alignment algorithm must have
a good technique for searching the space of multiple alignments.
Although popular, progressive alignment (Feng and Doolittle, 1987)
suffers from serious flaws. In particular, homology relations are fixed
at each step, so mistakes made early in the alignment construction
are uncorrected. Progressive structural alignment, which commonly
corresponds to choosing a consensus structure at the very first step of
the algorithm, is particularly problematic. While improvements on
basic progressive alignment, such as iterative refinement (Gotoh,
1996), can partially ameliorate these problems, the fundamental
limitations of the approach remain (and furthermore, iterative

© The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2677

http://biowiki.org/


R.K.Bradley et al.

refinement is undesirable for computationally costly structural
alignment).

We present a novel method for RNA multiple alignment
which successfully addresses both of these problems. The
sensitivity/specificity tradeoff of our method is controlled by a single
adjustable parameter, allowing users to choose a setting appropriate
to their intended application. Furthermore, we search the RNA
multiple alignment space with the sequence annealing technique
introduced for protein multiple alignment (Schwartz and Pachter,
2007), thereby sidestepping the inherent limitations of progressive
alignment.

In contrast with progressive alignment methods, which take
large steps through alignment space, sequence annealing takes the
smallest steps possible. We begin with the null alignment, where
all sequences are unaligned, and merge single columns (align
characters) according to the corresponding expected increase in an
objective function, the alignment metric accuracy (AMA), which
takes both the expected sensitivity and specificity into account.
Put plainly, sequence annealing constructs a multiple alignment
by iteratively aligning characters which have a high posterior
probability of being aligned.

The posterior probabilities which inform the annealing algorithm
are calculated by summing over all possible structural alignments
of sequences X and Y with a pairwise Sankoff algorithm. Sequence
annealing of RNA is therefore informed by structural considerations,
but outputs only a multiple sequence alignment, not a structure.
We treat structure as an unobserved random variable to be
marginalized over in order to calculate the alignment probabilities
used by sequence annealing; many competing structures are allowed
to contribute to these probabilities. After sequence annealing has
produced a multiple sequence alignment, if desired a corresponding
consensus structure can be predicted with a phylo-grammar-based
method such as PFOLD (Knudsen and Hein, 2003) or xrate
(Klosterman et al., 2006).

We have implemented our methodology in Stemloc-AMA,
a probabilistic structural alignment program which builds upon
Stemloc (Holmes, 2005), a progressive RNA structural aligner,
and AMAP (Schwartz and Pachter, 2007), an implementation of
sequence annealing for protein alignment. Benchmarking against
the BRalibase II (Gardner et al., 2005) and BRalibase 2.1 (Wilm
et al., 2006) databases of RNA multiple alignments, we find that our
approach has sensitivity comparable to that of the best competing
methods and superior specificity. The comparative gain in specificity
increases in the presence of low sequence identity or structurally
diverged sequence. We use a random-sequence experiment to
demonstrate that this increase in per-column specificity makes
our approach far more robust than any other tested method when
presented with non-homologous sequence.

2 RESULTS
Structural alignment methods can be divided into two categories,
thermodynamic or energy-attributed models and probabilistic
models, where by ‘probabilistic model’ we mean a generative model
which assigns a joint likelihood to both alignment and structure.
We hypothesize that this natural modeling of both alignment and
structure, combined with their robustness under uncertainty, allows
probabilistic models to outperform thermodynamic methods.

Originally developed for single-sequence structure prediction,
thermodynamic models associate a free energy term to each possible
RNA structure, corresponding to the estimated change in free energy
from a random coil to a folded state, and (generally) attempt
to find the minimum free energy structure. This single-sequence
structure model is then extended to multiple structural alignment by
adding ‘cost’ terms for the sequence alignment, predicted structures
and/or observed covariation (Hofacker et al., 2004; Mathews
and Turner, 2002). The parameters of thermodynamic models
often have clear biophysical interpretations and are frequently
experimentally determined (Mathews et al., 1999; Turner et al.,
1987). Thermodynamic models are probabilistic insofar as they
implicitly assign a probability to each possible structure via the
partition function (McCaskill, 1990), but they generally lack a
principled way to incorporate alignment information into this
probability distribution.

Probabilistic models, in contrast, simultaneously model both
alignment and structure and associate a probability to each possible
structural alignment. There is no explicit biophysical model and the
parameters rarely have obvious interpretations; rather, they reflect
the prevalence of particular features of the structural alignments in
the training data.

Despite the intuitive appeal of thermodynamic approaches, we
believe that probabilistic models offer significant advantages. There
is no clearly correct way to weight the different contributions
from cost terms for sequence alignment, predicted structures and
covariation when building a thermodynamic model; each worker
does this differently. In contrast, probabilistic models naturally
account for all of these terms, and there exist robust methods
for automatically learning the corresponding parameters from the
data (Durbin et al., 1998). Most importantly, as discussed below,
probabilistic models offer a principled way to cope with alignment
uncertainty.
Stemloc-AMA relies on the probabilistic version of the

Sankoff algorithms (Sankoff, 1985) for pairwise structural alignment
implemented in the Stemloc program.

2.1 Probabilistic models and the multiple alignment
problem

Probabilistic models are robust under uncertainty. This is crucial for
accurate multiple alignment; our models are, at best, approximations
to biological reality, and so appropriate homology assignments
will rarely be obvious. When creating a multiple alignment, we
must avoid being wrong (introducing false homology) as much as
possible.

Sequence annealing, introduced for protein multiple alignment
and implemented in the AMAP program (Schwartz and Pachter,
2007), attempts to achieve exactly that. There are two crucial
insights of the sequence annealing technique: first, that a measure of
alignment quality should assess both sensitivity and specificity, and
second, that when constructing a multiple alignment, we should first
align characters whose homology we are certain of and only later
align characters of unclear homology. It thereby addresses both of
the problems laid out in Section 1.

Described more fully in Section 4, sequence annealing greedily
maximizes a scoring function which depends on both the sensitivity
and specificity of the alignment. The tradeoff is specified by the
user-controlled ‘gap factor’. Multiple alignments are constructed
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one match at a time by iteratively aligning pairs of characters
with high posterior probabilities of being aligned. These posterior
probabilities, P(xi ∼yj|X,Y ), are calculated by summing over all
possible structural alignments of X and Y .

The comparative advantage of using a probabilistic approach
for multiple alignment increases with growing uncertainty.
Stemloc-AMA does comparatively better as the alignment problem
grows more difficult, whether because of low sequence identity,
structural divergence or many sequences.

2.2 Comparison with thermodynamic algorithms
We benchmarked our RNA alignment algorithm against BRalibase
II (Gardner et al., 2005) and BRalibase 2.1 (Wilm et al., 2006),
both databases of RNA multiple alignments. BRalibase II contains
multiple alignments from four ncRNA families, 5S ribosomal
RNA (rRNA), transfer RNA (tRNA), U5 spliceosomal RNA
and Group II introns. Each family contains approximately 100
multiple alignments of five sequences. We benchmarked against all
families for BRalibase II. For experiments on BRalibase 2.1, which
contains over 18 000 multiple alignments, we benchmarked against
alignments with 15 sequences (the hardest alignment problems in the
database) and restricted our analysis to families of length <150 nt.
We also excluded rRNA and tRNA sequences because they are
already represented in BRalibase II. Section 4.1 lists the families
analyzed.

We compared our method against four thermodynamically
informed multiple alignment programs, FoldalignM (Torarinsson
et al., 2007), LocARNA (Will et al., 2007), RNASampler (Xu
et al., 2007) and MASTR (Lindgreen et al., 2007), as well as
MXSCARNA (Tabei et al., 2008) and Murlet (Kiryu et al.,
2007), thermodynamic/probabilistic hybrid models. FoldalignM
(Torarinsson et al., 2007) is an extension of Foldalign (Gorodkin
et al., 1997; Havgaard et al., 2005, 2007), the first lightweight
implementation of the Sankoff algorithms, and builds multiple
alignments progressively. LocARNA (Will et al., 2007) uses
aggressive heuristics to reduce the cost of the Sankoff algorithms and
builds multiple alignments progressively. RNASampler (Xu et al.,
2007) and MASTR (Lindgreen et al., 2007) use sampling techniques
to explore the space of multiple alignments. MXSCARNA (Tabei
et al., 2008) progressively aligns candidate stem sequences along a
guide tree. Murlet (Kiryu et al., 2007) uses the thermodynamic
RNAAlifold program in the ViennaRNA package (Hofacker
et al., 2002, 2004) to calculate base-pairing probabilities, scores
pairwise alignments heuristically according to a probabilistic
measure related to the one which we propose here and builds
multiple alignments progressively. We also included the popular
program ClustalW (Larkin et al., 2007) as a control.

Table 1 and Figure 1 compare Stemloc-AMA’s performance
against that of other RNA structural alignment methods.
Stemloc-AMA has comparable sensitivity to Murlet, the best
competing method, and better specificity than all other programs.
The advantage of our method is most apparent on the more-
challenging datasets, U5 and Group II intron, which exhibit
significant structural divergence. Surprisingly, we found that
the aging algorithm ClustalW outperformed several of the
thermodynamic methods on these datasets (Table 1).

Our Stemloc-AMA program outperforms energy-attributed
methods despite the experimentally measured thermodynamic

Table 1. Sensitivity and positive predictive value (SPS/PPV) for the
BRalibase II alignments (calculated by averaging over all alignments)

Program rRNA tRNA U5 g2intron

(SPS/PPV) (SPS/PPV) (SPS/PPV) (SPS/PPV)
Stemloc-AMA 94.1 / 94.3 93.4 / 94.7 83.2 / 86.7 77.4 / 79.8
ClustalW 92.8 / 92.4 87.2 / 87.2 78.4 / 78.1 71.0 / 69.9
FoldalignM 91.2 / 90.8 94.2 / 93.9 71.2 / 70.9 68.2 / 67.3
LocARNA 94.6 / 94.1 95.6 / 95.3 81.3 / 80.8 73.8 / 72.4
MASTR 75.9 / 75.8 80.8 / 81.2 65.7 / 65.8 65.4 / 65.2
RNASampler 81.8 / 90.7 80.2 / 91.0 67.1 / 78.7 64.6 / 71.7
Murlet 94.4 / 94.0 93.4 / 93.3 83.6 / 83.8 78.2 / 78.1
MXSCARNA 94.3 / 94.3 93.3 / 93.6 82.8 / 83.9 77.6/ 77.8

Stemloc-AMA, run with a gap factor of 0 for more sensitive alignments, has high
sensitivity and specificity for all families. See Figure 1 for an illustration of how a
higher gap factor yields more specific alignments. ‘g2intron’ is the Group II intron
dataset. Bold values indicate the best-performing method on each dataset.

information encoded in their rich models of RNA structure.
We hypothesize that this is due to (1) Stemloc’s integrated
probabilistic modeling of sequence and structure evolution, and
(2) Stemloc-AMA’s robustness under uncertainty. It is not because
Stemloc-AMA does a better job of solving the RNA structure
problem.

In contrast, this is the weakest point of our approach:
Stemloc-AMA constrains its search of structural-alignment space
by individually folding each sequence (‘pre-folding’) with a single-
sequence SCFG prior to structural alignment and only iterates over
the N best folds during the pairwise structural alignment phase.
Single-sequence SCFGs are known to perform relatively poorly
at structure prediction; the best grammars have sensitivities and
positive predictive values of ∼45% (Dowell and Eddy, 2004).
Our structural model incorporates base-stacking effects, but ignores
many of the other complex features modeled by thermodynamic
approaches. The current best-performing approach, CONTRAFOLD,
achieves sensitivity gains of ∼50% over single-sequence grammars
like the one which we use. It explicitly models additional features,
such as closing base pairs of stems, length distributions over
hairpins, stems, bulges and internal loops, internal loop asymmetries,
dangling base-stacking and distributions over multi-branch loops.
None of these features, which are important in the thermodynamics
of RNA structure, are modeled by our approach. Stemloc-AMA’s
prediction speed and accuracy could be improved by using an
approach like CONTRAFOLD to inform the pre-folding stage.

2.3 Alignment in the twilight zone
The twilight zone of RNA alignment begins at ∼60% pairwise
sequence identity (Gardner et al., 2005), in contrast to ∼20% for
proteins, due to the lower per-site information content of nucleotide
sequence. Effective sequence alignment in the twilight zone requires
structural information.

Figures in the Supplementary Material show sensitivity and
positive predictive value (PPV) for the four families in BRalibase
II as functions of average pairwise sequence identity and fraction
of gaps in the reference alignments. Stemloc-AMA’s improved
handling of uncertain homology is most evident on difficult
alignments with low sequence identity or significant structural
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Fig. 1. Receiver operator characteristic (ROC) curves comparing the performance of our method against other programs on the BRalibase II and BRalibase
2.1 (k = 15 sequences) datasets. Stemloc-AMA has better specificity than all competing algorithms, and only Murlet has better sensitivity. Note that the text
for Stemloc-AMA (GF = 0) and MXSCARNA overlaps on the BRalibase II plot. The BRalibase 2.1 dataset consisted of all alignments of length <150 nt with
15 sequences (the largest alignments), excepting rRNAs and tRNAs, which are already represented in BRalibase II. Our method’s computational complexity
(see Section 2.5) prevented us from running on sequences longer than 150 nt. The ROC curve for our method was created by varying the gap factor (GF),
which controls the sensitivity/specificity tradeoff. We were unable to run RNASampler on the BRalibase 2.1 dataset.

divergence (high fraction of gaps), where it produces alignments
with much higher PPV than do the other methods. High PPV is
essential for biological inferences ranging from phylogeny, where
an incorrect alignment can yield a distorted tree topology, to
measurement of substitution rates, where an incorrect alignment can
yield poor rate estimates.

The effectiveness of the sequence annealing approach to moving
through multiple alignment space becomes clearly visible as
the alignment problem becomes more difficult (Supplementary
Material). On the three datasets with many alignments in the twilight
zone, tRNA, U5 and Group II intron, Stemloc-AMA produces
much more specific alignments than the original Stemloc, which
uses progressive alignment to build a multiple alignment. The PPV
of Stemloc-AMA is ∼10% higher than the PPV of Stemloc
below ∼50% pairwise sequence identity, a significant gain on a
hard alignment problem.

2.4 Beyond curated alignment benchmarks
The alignment benchmarks such as BralibaseII typically used
to compare the performance of alignment algorithms are not
representative of the everyday problems faced by biologists.As such,
they can subtly bias algorithm developers to create methods which
seem robust when tested on these ‘gold-standard’databases but falter
when given real-world problems.

The principal problem with testing on alignment databases is that
developers know from the beginning that there is homology present,
probably covering almost all of the input sequence. This is not a
realistic problem setup for biologists, who generally have sequence
of interest embedded in longer sequence of uncertain homology, and
furthermore frequently may not know whether there is detectable
homology at all in their target sequences. An alignment program
should therefore not assume a priori that there is homology present.

It should be robust to the situations faced by biologists, where
homology is frequently unclear, and not over-align input sequences
in order to maximize sensitivity.

Because our method is the most specific of the tested programs
at a per-column level, where we measure the accuracy of aligned
characters, we hypothesized that it was also the most specific at the
‘sequence homology’ level, where we seek to determine whether
two sequences are related. We conducted two experiments to verify
this hypothesis: (1) we aligned true ncRNAs of mixed homology
and (2) we aligned random sequences of no homology.

For our first experiment, we randomly picked two tRNA and
two Group II intron sequences from BRalibase II and aligned
them with ClustalW, Murlet and Stemloc-AMA. Figure 2
shows the resulting alignments. ClustalW and Murlet, assuming
homology and attempting to maximize sensitivity, returned near-
complete alignments of all four sequences. Stemloc-AMA, in
contrast, separately aligned the two tRNAs and two Group II introns
and then left the two alignments almost completely disjoint.

Our second experiment tested our conjecture that other programs
will align non-homologous sequence. We generated 25 datasets, each
consisting of five random sequences of 80 nt in length, and used all
tested programs to attempt to align the sequences. The results are
shown in Table 2 and clearly demonstrate that all tested programs
other than Stemloc-AMA give near-complete alignments of even
random sequence in an attempt to maximize sensitivity, thereby
indicating to biologists that random sequences are evolutionarily
related.

2.5 Computational complexity
Stemloc-AMA’s computational complexity makes it significantly
slower than competing methods. Approximate time complexities for
the tested programs on the random sequence dataset are shown in
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Fig. 2. Standard alignment methods are designed to maximize sensitivity, even to the point of aligning unrelated sequences. We used ClustalW (top),
Murlet (middle) and Stemloc-AMA (bottom) to align four randomly chosen sequences from BralibaseII, two of which were tRNAs and two of which
were Group II introns. All programs correctly aligned the two tRNAs and two Group II introns, but both ClustalW and Murlet also aligned the tRNAs
to the Group II introns. In contrast, Stemloc-AMA correctly detected the lack of homology and did not align the two unrelated families. The two tRNA
sequences are Y08502.1-137669_137741 and M20960.1-1_74; the two Group II intron sequences are AP000397.1-37693_37753 and X63625.1-1815_1875.

Table 2. Aligning random sequences shows that all tested alignment
programs other than Stemloc-AMA dramatically over-align sequence

Program % of random
sequence
aligned

Stemloc-AMA (GF = 0) 19
Stemloc-AMA (GF = 1) 10
Stemloc-AMA (GF = 4) 8
ClustalW 93
FoldalignM 99
LocARNA 98
MASTR 91
Murlet 89
MXSCARNA 81

We used each program to align 25 datasets, each consisting of five random sequences
of 80 nt in length, and calculated the fraction of possible nucleotide pairs which were
aligned. Bold values indicate the best-performing method on each dataset.

Table 3. Stemloc-AMA’s speed can be improved with (1) more
aggressive heuristics and (2) a better structural model. Recent
advances in heuristics for simultaneous aligning and folding could
be incorporated in Stemloc-AMA. For example, FoldalignM
prunes low-scoring entries from the dynamic programming matrix
in order to reduce memory requirements and computation time.
LocARNA uses a cutoff for the minimum-probability base pairs
considered by the algorithm, resulting in O(L4) complexity in
time. Murlet uses a ‘skip’ approximation to limit the number of

Table 3. Time complexity of tested programs on the Group II intron
alignments in BRalibase II

Program Average time
(minutes:seconds)
per alignment

Stemloc-AMA 8:53
ClustalW 0:02
FoldalignM 1:09
LocARNA 0:11
MASTR 0:26
RNASampler 0:21
Murlet 0:13
MXSCARNA 0:02

Times reported were calculated on a 1.0 GHz AMD Opteron Processor 248. If there are
no clearly best folds or alignments, then Stemloc-AMA imposes few constraints on
the search space for the Sankoff algorithms, thereby increasing execution time. Bold
values indicate the best-performing method on each dataset.

bifurcations considered by the algorithm. All of these heuristics
described are modified versions of the Sankoff algorithm, and as
such could readily be implemented in Stemloc-AMA.

As discussed earlier, Stemloc-AMA’s model of RNA structure
is relatively simple, and so in order to get a good alignment
Stemloc-AMA must frequently explore a large fraction of the
fold space. By using more accurate base-pairing probabilities to
calculate appropriate fold envelopes, such as those reported by
CONTRAFOLD, Stemloc-AMA could both increase alignment
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accuracy and decrease execution time (since we could constrain the
Sankoff algorithms to a smaller part of the search space).

3 DISCUSSION
Although there are currently only two probabilistic RNA structural
alignment tools, Stemloc-AMA and CONSAN (Dowell and Eddy,
2006),1 the method which we have described is applicable beyond
its implementation in Stemloc-AMA. We describe a modular
approach to solving the RNA multiple alignment problem, wherein
we first build a probabilistic model to compute the pairwise
posterior probabilities that two characters are aligned and then
use the sequence annealing technique to efficiently explore the
space of multiple alignments. We could instead use a different
probabilistic model to get posterior alignment probabilities (instead
of Stemloc’s structural alignment) or an alternate technique for
building a multiple alignment from these pairwise probabilities
(instead of AMAP’s sequence annealing).

The strengths of probabilistic inference for RNA are becoming
increasingly clear. The probabilistic CONTRAFOLD program (Do
et al., 2006) for single-sequence structure prediction outperforms
competing thermodynamic approaches. Similarly, our benchmark
against BRalibase II and BRalibase 2.1 (see Section 2.2) indicates
that our probabilistic approach to RNA multiple alignment out-
performs purely thermodynamic algorithms despite its relatively
simple model of RNA structure. We hypothesize that its robustness
under uncertainty, as exemplified by the results of the random
sequence tests, is due to its probabilistic nature and explicit modeling
of the sensitivity/specificity tradeoff.

4 METHODS

4.1 Data
The BRalibase II database (Gardner et al., 2005) was downloaded from
http://people.binf.ku.dk/pgardner/bralibase. We used the 5S rRNA, tRNA,
U5 and Group II intron datasets used in Gardner et al. (2005) for this
study. The BRalibase 2.1 database (Wilm et al., 2006) was downloaded from
http://www.biophys.uni-duesseldorf.de/bralibase. We used alignments with
15 sequences, but restricted our analysis to families of length <150 nt and
excluded rRNAs and tRNAs, which are already represented in BRalibase
II. This left the families HCV_SLIV, Hammerhead_3, S_box, HCV_SLVII,
HepC_CRE, HIV_FE, Histone3, Retroviral_psi, TAR, Entero_5_CRE,
HIV_GSL3, SECIS, THI, Entero_CRE, HIV_PBS and SRP_bact.

The percent ID of a column was calculated by summing over all pairs
of aligned nucleotides and counting the fraction of identical pairs. The gap
fraction was calculated as the number of gaps in the alignment divided by
the total number of characters, including gaps, in the alignment. Sequences
shown in Figure 2 were taken from tRNA/aln75 and g2intron/aln90. RFAM
identifiers are given in the figure caption.

4.2 Pairwise structural alignment
The core of Stemloc-AMA is a pairwise implementation of the probabilistic
Sankoff algorithm which is constrained by two heuristics, alignment and fold
envelopes (Holmes, 1998, 2005), for tractability. An alignment envelope
constrains the set of possible pairwise alignments considered by the Sankoff
algorithms. Alignment envelopes are computed for each pair of sequences
by taking the union of the N-best alignments as calculated by a Pair Hidden

1CONSAN only performs pairwise alignments and so was not tested as part
of this study.

Markov Model. A fold envelope constrains the set of possible structures of a
sequence considered by the Sankoff algorithm. Fold envelopes are computed
for each sequence by taking the union of the N-best structures as calculated by
a single-sequence SCFG. The single-sequence SCFG models base stacking,
but includes none of the rich features typical of thermodynamic models such
as explicit distributions over loop lengths.

The alignment and fold envelope constraints are described more fully
in Holmes (2005). They offer a principled way for users to incorporate
additional information, such as the known fold of a single sequence, into
the structural alignment algorithm.

After calculating the alignment and fold envelopes, Stemloc-AMA’s
Sankoff algorithm then performs pairwise structural alignments, considering
only those alignments and structures contained in the computed alignment
and fold envelopes. The Inside and Outside algorithms are used to sum over
all possible structural alignments of pairs of sequences to obtain the pairwise
posterior probabilities P(xi ∼yj|X,Y ) that two characters are aligned.

4.3 Searching the space of multiple alignments
The sequence annealing technique implemented in AMAP (Schwartz and
Pachter, 2007) is then used to construct a multiple alignment from these
posterior probabilities. Sequence annealing uses the pairwise posterior
probabilities P(xi ∼yj|X,Y ) estimated with structural alignment to greedily
maximize the expected AMA. AMA, an assessment of alignment fidelity
which measures both sensitivity and specificity, is defined for two sequences
as the total number of characters which are correctly aligned to either another
character or a gap (Schwartz et al., 2006). The definition is extended to
multiple sequences simply by taking sum-of-pairs.

We can use the pairwise posterior probabilities P(xi ∼yj|X,Y ) to calculate
the expected AMA as

E[AMA]=2·
∑
i,j

P(xi ∼yj|X,Y )

+
∑

i

P(xi ∼−|X,Y )+
∑

j

P(yj ∼−|X,Y ).

More generally, we may want to explicitly control the sensitivity/specificity
tradeoff of our alignment algorithm. We introduce a gap factor GF into our
definition of the expected AMA,

E[AMA]=2·
∑
bi,j

P(xi ∼yj|X,Y )

+GF·

∑

i

P(xi ∼−|X,Y )+
∑

j

P(yj ∼−|X,Y )


 ,

such that a lower GF emphasizes sensitivity and a higher GF specificity.
Using the expected AMA as an objective function for a greedy maximization,
sequence annealing begins with the null alignment (all sequences unaligned)
and merges single columns (aligns characters) according to the expected
increase in E[AMA].Agap factor GF=1 corresponds to the originalAMA, in
which case we stop aligning characters when the probability that a character
is aligned is equal to the probability that it is unaligned (aligned to a gap).

Sequence annealing greedily maximizes E[AMA] by annealing single
columns of the alignment. The sequence annealing process begins with
the null alignment, where all sequences are unaligned, and iteratively
aligns single columns according to the posterior probabilities that they are
aligned, P(xi ∼yj|X,Y ), or gapped, P(xi ∼−|X,Y ) and P(yj ∼−|X,Y ). The
consistency of the corresponding multiple alignment is quickly checked
with an online topological ordering algorithm (Pearce and Kelly, 2006). A
complete description of sequence annealing is given in Schwartz and Pachter
(2007), which introduced the sequence annealing approach and applied it to
protein multiple alignment with the program AMAP.
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4.4 Comparison with other alignment methods
With the exception of Stemloc and Stemloc-AMA, all programs were run
with default parameters. Stemloc and Stemloc-AMA were constrained
to consider only the 100-best pairwise alignments (-na 100) and 1000-
best folds (-nf 1000); the default settings are 100-best alignments and all
folds.
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